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SUMMARY

A numerical model has been developed for simulating density-stratified flow in domains with irregular
but simple topography. The model was designed for simulating strong interactions between internal
gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven
flow over two-dimensional sills or waves propagating onto a shoaling bed. The model is based on the
non-hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame,
subject to user-configurable boundary conditions. An orthogonal boundary fitting co-ordinate system is
used for the numerical computations, which rely on a fourth-order compact differentiation scheme, a
third-order explicit time stepping and a multi-grid based pressure projection algorithm. The numerical
techniques are described and a suite of validation studies are presented. The validation studies include a
pointwise comparison of numerical simulations with both analytical solutions and laboratory measure-
ments of non-linear solitary wave propagation. Simulation results for flows lacking analytical or
laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance.
Computational results are compared with two-layer hydraulic predictions in the case of exchange flow
through a contracting channel. Finally, a simulation of circulation driven by spatially non-uniform
surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are many geophysical flows where the interaction of a density-stratified fluid with
variable topography is the dynamical effect of primary interest. Hydraulically controlled flow
through straits, internal wave generation and propagation near sills, and waves approaching
shoaling bathymetry are but a few examples. To study these problems using computational
methods is often difficult. To simulate non-linear wave dynamics, the high accuracy and good
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phase properties of (global) spectral methods are desirable but, unfortunately, these methods
are inherently limited to simple geometries. There are many codes available that are designed
for large-scale simulation of hydrostatic flow in domains intended to represent naturally
occurring variability. These codes, however, represent non-linear waves only poorly, both due
to the hydrostatic approximation and to the low-order discretizations typically used. A
non-hydrostatic numerical model that could be employed in non-uniform domains but based
on relatively high-order numerical methods would thus be a useful tool for a reasonably broad
class of problems.

Here, such a model is presented, designed for process-oriented simulation studies of
density-stratified flow in irregular bathymetries. The purpose of this paper is threefold: to
document the underlying numerical techniques, to validate the methodology through a small
suite of test cases and to illustrate by example some of the types of flow that can be studied
using these techniques. The numerical code is called S-FIT, for stratified-flow interacting with
topography.

S-FIT was designed for detailed investigations of idealized flows in irregular but relatively
simple domains, where non-uniformities in the geometry occur in two rather than three
dimensions. In its simplest configuration, the model is intended for direct numerical simula-
tions (DNS), i.e. it provides approximate solutions to the (non-hydrostatic) Navier–Stokes
equations for incompressible, rotating, density-stratified fluids given appropriate initial and
boundary conditions. The algorithm relies on a numerically generated transformation from
boundary fitting, orthogonal curvilinear co-ordinates to a regularly structured computational
grid. This transformation allows the use of accurate, easily coded numerical methods, at the
cost of working with the more complicated, transformed equations of motion. Because grid
lines intersect the boundaries orthogonally, numerical representation of the relevant boundary
conditions poses no particular complication. Boundary conditions are thus treated accurately
and consistently with the interior discretizations. The original motivation for developing the
model was to simulate flows that are strongly rather than weakly influenced by geometrical
variability, and within which, boundary interactions are communicated to the interior flow by
means of internal gravity waves.

The numerical methods have been implemented and tested for two geometrical configura-
tions: variable width channels with vertical side-walls and channels or basins with depth
variation along one horizontal co-ordinate. The model generates numerical solutions for either
unforced initial value problems or for flows forced by surface stress, surface heat transfers or
by externally established barotropic pressure gradients. Open boundary conditions with
optional damping or viscous fringe regions can also be invoked. Though limited, these
configurations permit simulation of a modest range of geophysically motivated stratified flows,
e.g.

1. non-linear evolution of basin scale seiching waves;
2. exchange flow through a contracting channel, driven by density and pressure differences

between two reservoirs;
3. exchange flow between two basins separated by a sill, driven by laterally variable surface

cooling;
4. tidally driven, stratified flow over a two-dimensional sill;
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5. plunging inflow to a sloping basin;
6. internal wave breaking over shoaling bathymetry.

The remainder of the paper is organized as follows. The equations of motion, the basic
notation and the allowable geometries are described in Section 2, along with the transforma-
tion of the equations to curvilinear co-ordinates and the grid generation. The solution
techniques are discussed in Section 3 followed by validation comparisons with analytical
solutions in Section 4. Sample applications, automatically generated validation diagnostics,
and a comparison of simulation results with laboratory measurements and approximate theory
are shown in Section 5.

2. EQUATIONS OF MOTION AND ALLOWABLE GEOMETRIES

The equations of motion for an incompressible, density-stratified fluid under the Boussinesq
approximation are

(

(t
u� +u� ·9u� + ẑ× fu� = −

1
r0

9p− ẑ
g
r0

r %+9 ·n9u� , (1)

(

(t
r %+u� ·9r %+w

d
dz

r̄=9 ·k9r %, (2)

9 ·u� =0. (3)

Here, u� is the velocity vector with components [u, 6, w ] in the Cartesian co-ordinate directions
x, y and z ; r % is the density perturbation from an arbitrarily specified, time-independent profile
r̄(z); r0 is a constant reference density; g is the gravitational acceleration; f is the Coriolis
parameter; and ẑ is the unit vector in the vertical direction (positive upward). For now, the
coefficients n and k are regarded as molecular viscosity and diffusivity respectively, with time-
and space-independent values; but note that they could be interpreted as eddy coefficients if a
subgrid scale model were to be introduced to estimate their values as functions of the resolved
scale flow.

2.1. ‘Reduced-complexity’ domains

The primary interest involves the interaction of internal gravity waves and currents with
non-uniform topography. Therefore, approximate solutions to Equations (1)–(3) in irregular
domains are desired. Arbitrarily complex geometries in three dimensions can easily lead to
computational demands beyond the present capabilities, especially if relatively high-order
numerical methods at moderate to high resolution are desired. For this reason, and because
there remain many fundamental problems that can be formulated in simpler geometries, the
numerical model is designed for application in either of two reduced-complexity domains. The
purpose of this type of computation is not to simulate specific flows in specific domains that
are realistically represented, but to explore in detail the basic physics and processes character-
izing density-stratified flows, which are strongly influenced by topographical variability.
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Figure 1 is a schematic of the two allowable geometrical configurations for S-FIT. Each
computational domain consists of the volume in space defined by the translation of a simple,
closed planar region in the direction normal to the plane itself. The two configurations are
distinguished by the orientation direction of the planar regions, i.e. whether the planes lie
parallel or perpendicular to the direction of gravity. Domains similar to that in Figure 1(a) are
denoted Vxy and are characterized by simple, closed regions in a horizontal plane. A
three-dimensional volume is obtained through vertical translation over a specified distance L.
Within the x–y horizontal plane, a curvilinear, boundary fitting co-ordinate system is defined.
By requiring the domain shape to be uniform in the z-direction, the x–y curvilinear
co-ordinate system can be retained for all z. The resulting computational domain can in this

Figure 1. Schematic showing the two allowable domains for the computational model.
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sense be regarded as separable. Vxy domains are appropriate for simulating flow in vertical
side-wall channels of constant depth and variable width.

Domains similar to that in Figure 1(b) are denoted Vxz and differ only in that the closed
regions and curvilinear co-ordinates are prescribed in a vertical x–z plane. Translation is then
taken laterally (in y) to form the three-dimensional computational space. Vxz domains are thus
appropriate for simulating flow in simple channels with depth variation in one horizontal
direction, e.g. hydraulically-controlled flow over two-dimensional sills.

To reduce computational complexity, it is required that the two-dimensional curvilinear
co-ordinate systems in either domain to be orthogonal, i.e. to obey xjyj+xhyh=0 in Vxy or
xjzj+xzzz=0 in Vxz. It is convenient to work with velocity vectors oriented along grid lines
defined by holding j, h or z constant and thus introduce the following transformation pairs for
the velocity components along the curvilinear grid lines. For Vxy let

�u
6

n
=
�xj

yj

xh

yh

n�U
V
n

and
�U

V
n

=
1

Jxy

� yh

−yj

−xh

xj

n�u
6

n
, (4)

and similarly for Vxz

�u
w
n

=
�xj

zj

xz

zz

n�U
W
n

and
�U

W
n

=
1

Jxz

� zz

−zj

−xz

xj

n�u
w
n

, (5)

where

Jxy(j, h)=xjyh−xhyj and Jxz(j, z)=xjzz−xzzj. (6)

2.2. Transformed equations of motion

Using these transformations and the differentiation formulae (7) and (8)

�fx

fy

n
=

1
Jxy

� yh

−xh

−yj

xj

n�fj

fh

n
, (7)

�fx

fz

n
=

1
Jxz

� zz

−xz

−zj

xj

n�fj

fz

n
, (8)

Equations (1)–(3) can be written in terms of the transformed variables. For Vxy, we have

(

(t
U+a1,1U2+a1,2UV+a1,3V2−gxy

1 fV= −
1
r0

Gxy
j [p ]+diss(U), (9)

(

(t
V+a2,1U2+a2,2UV+a2,3V2+gxy

2 fU= −
1
r0

Gxy
h [p ]+diss(V), (10)
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(

(t
w+

g
r0

r %= −
1
r0

Gxy
z [p ]+diss(w), (11)

d
dt

r %+
1
zz

w
d
dz

r̄=diff(r), (12)
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where Gxy
j [p ] is the j component of the vector operator Gxy acting on the pressure p. The

variable coefficients ai,j and gxy
i and Gxy are defined in Table I, and Equation (13) defines the

divergence operator Dxy.
Similarly, in the domain Vxz, we obtain

d
dt

U+b1,1U2+b1,2UW+b1,3W 2−
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Table I. Coefficients for Vxy domains

a1,3=
(yhxhh−xhyhh)

Jxy

a1,2=
2(yhxjh−xhyjh)
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d
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+
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yh
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6
(

(h
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(

(z
, (20)

where, for example, Gxz
z [p ] is the z component of Gxz [p ], defined in Table II along with the

coefficients bi,j and gxz
i . For both sets of equations, the notation ‘diss’ and ‘diff’ represent

transformation of the dissipation and diffusion terms respectively, allowing for the possibility
of spatially varying coefficients n and k. Although more complicated than in their original
forms, the transformed equations are much simpler than those for more general three-
dimensional curvilinear co-ordinates. The restriction to the simpler domains Vxy and Vxz limits
the spatial variability of ai,j, bi,j and gi,j, as well as the non-constant coefficients associated with
the G and D operators to two dimensions. This results in a large saving in computer memory,
which makes the overall solution algorithm computationally feasible. The restriction to
orthogonal co-ordinates further simplifies the equations somewhat by reducing the number of
non-linear velocity products that appear. Finally, the combination of boundary orthogonality
and grid-aligned velocity components greatly simplifies the form of dynamically relevant
boundary conditions.

2.3. Orthogonal grid generation

The construction of a network of grid lines that intersect orthogonally and are coincident with
specified boundary curves (see Figure 1) is accomplished using the covariant Laplace equation
method [1,2]. It is noted that, aside from the notation, the grid generation procedure is
identical for both domains Vxy and Vxz, and thus the method is described using the notation
appropriate for Vxy. The computational mesh is defined as a set of regularly spaced grid points
(ji,j, hi,j) for i=1, 2, . . . , Nj and j=1, 2, . . . , Nh with 05j5Lj and 05h5Lh. The co-
ordinate transformation represents a mapping from the set of computational grid points
(ji,j, hi,j) to a discrete set of spatial locations (xi,j, yi,j), which sample a dense set of orthogonal,
curvilinear grid lines. For a specified boundary geometry, the mapping is obtained via the
numerical solution of three successive elliptic boundary value problems. In the covariant
Laplace method, three constraints are imposed on the co-ordinate map, namely

Table II. Coefficients for Vxz Domains
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� edge points of the computational mesh are mapped to discrete points on the boundary
segments defining the non-uniform domain;

� the distributions of discrete boundary points along two of the four segments are pre-
scribed;

� the co-ordinate lines are orthogonal in the physical (x, y) domain.

The first constraint is clearly necessary for all simple grids. By prescribing the distribution
of boundary points, the spatial distribution of the grid resolution can be controlled. Al-
though specification of boundary correspondence on two sides was found to be adequate
for purposes here, Oh and Kang [3] have shown that correspondence can be specified on
up to three sides. Because we only require the grid generation to be done once, prior to the
flow simulations, the implementation of the covariant Laplace technique employs accurate
numerical techniques wherever possible. For example, the singularities in the integral equa-
tions arising in the boundary integral method are first removed analytically, leaving a
residual integration that is estimated numerically to fourth-order accuracy. This is done
generally; no geometry specific analysis is required. Discrete derivative operators, as well as
the interior elliptic solver are also fourth-order-accurate. Furthermore, the intermediate,
conformal mapping calculations are performed using a finer discretization than that of the
final grid mapping.

Figure 2 shows the grid lines used for the exchange flow example discussed in Section
7.2. After the grid was constructed, the magnitude of the intersection angles, u, where

cos u(j, h)=
xjxh+yjyh

(xj
2 +yj

2)1/2(xh
2 +yh

2)1/2 , (21)

and were determined by numerical differentiation of x(j, h) and y(j, h) using a fourth-
order compact differencing scheme [4]. The average deviation from orthogonality for the
grid shown in Figure 2 is 6×10−5 rad.

Figure 2. Plan view of non-uniform channel and curvilinear grid.
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3. SOLUTION OF THE TRANSFORMED EQUATIONS

Before describing the numerical methods, it is convenient to rewrite Equations (9)–(19) as

(

(t
Ub =Fa u−

1
r0

G[p ], (22)

(

(t
r %=Fr, (23)

D[Ub ]=0, (24)

where the vector Ub is understood to have components [U, V, w ] in Vxy and [U, 6, W ] in Vxz,
and the operators G and D take their respective forms in the two domains. The terms Fa u and
Fr are then defined by the correspondence between (9)–(13) or (15)–(19) and (22)–(24) in Vxy

or Vxz respectively.
Time integration of these equations is carried out in two stages. Assuming the velocity and

density fields are known at time t and the solutions are desired at time t+Dt, an intermediate
velocity vector Ub � is first defined, where

Ub �(j, h, z)=Ub (j, h, z, t)+
& t+Dt

t

Fa u dt. (25)

Introducing the function P such that

Ub (j, h, z, t+Dt)=Ub �−Dt
r0

G[P ], (26)

it follows, for example, that

Dt
r0

Gxy
j [P ]=

1
r0

& t+Dt

t

Gxy
j [p ] dt, (27)

and hence

Pj=
1
Dt

& t+Dt

t

pj dt. (28)

Similar expressions are obtained for Ph and Pz in both domains. Note that derivatives of the
introduced function P are related to those of fluid pressure p through a time average over the
time interval Dt.

An elliptic equation for P is obtained by applying the appropriate form of D to Equation
(26) and imposing the appropriate condition of incompressibility, Equation (13) or (19), on
Ub (j, h, z, t+Dt),
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D[G[P ]]= −
r0

Dt
D[Ub �]. (29)

Recalling the definitions of D and G, it is seen that Equation (29) is a linear second-order
elliptic equation with mixed derivative terms and spatially variable, but time-independent,
coefficients. The source term depends on the values of Ub � and thus varies in both space and
time. Two types of boundary conditions are required in order to fully specify P. At solid walls,
the values of the normal derivatives, (P/(h, are determined by resolving Equation (26) into the
directions normal to the walls and imposing zero values for the normal velocities. At open
boundaries, for example, in cases where the up- and downstream computational boundaries do
not correspond with physical boundaries, the exact boundary conditions for pressure are
unknown, i.e. mathematically underdetermined. In an attempt to prescribe radiating ‘open’
boundary conditions, the pressure has been specified to be hydrostatic on these vertical planes.
In practice, damping or fringe regions adjacent to open boundaries are specified to minimize
unwanted reflections.

3.1. Numerical implementation

Given the velocity field Ub and the density field r % at discrete grid points at time tn, the
numerical procedure to estimate the solutions at time tn+1= tn+Dt consists of the following
steps:

(1) Calculate the intermediate velocity field Ub � and the tn+1 density field r %n+1 using the
third-order Adams–Bashforth time integration scheme

Ub �n+1=Ub n+
Dt
12

[23Fu
n−16Fu

n−1+5Fu
n−2], (30)

r %n+1=r %n+
Dt
12

[23Fr
n −16Fr

n−1+5Fr
n−2]. (31)

Note that previously computed values of the function F must be stored in order to carry out
the updates and that lower-order start-up schemes are required for the first two time steps. The
spatial derivatives required to evaluate the function F are estimated using a fourth-order
compact scheme [4,5].

(2) Given the intermediate velocity field Ub �, calculate D[Ub �] using the same compact
scheme for spatial derivatives. The precise forms of D and Ub depend on the choice of domains.

(3) Solve Equation (29) for P to fourth-order spatial accuracy. Here, MUDPACK [6,7], a
multi-grid solver for linear second-order elliptic equations in three dimensions is used.

(4) Calculate G[P ], again using fourth-order compact differentiation, and update the
intermediate velocity Ub as specified in Equation (26).

(5) Low-pass filter the solutions to eliminate growth of numerical instabilities at the smallest
scales. Filtering smoothes the solutions over scales slightly larger than the grid resolution. A
fourth-order compact filtering scheme [5], with filtering parameter a=0.475, is applied every
jth time step, where j is a user-specified parameter.
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4. VALIDATION SIMULATIONS

As with any numerical code, it is necessary to develop confidence in the implementation and
methodology through validation studies. A validation strategy has been designed, which
consists of checks at several levels.

1. Quantitative testing against simple flows in simple domains with known analytical
solutions.

2. Quantitative testing against physical measurement in the laboratory.
3. Automatic checking of global constraints, i.e. incompressibility and satisfaction of the

potential energy balance.
4. Qualitative examination of solutions for more complicated flows in irregular domains and

comparison with approximate theory where possible.

Any one of these checks would be incomplete. Application of the ensemble of tests, however,
provides reasonable assurance that the numerical algorithms are properly implemented.

4.1. Scalar diffusion

The analytical solution of the heat equation can be used to test the time stepping and the
spatial differentiation routines. An exact error function solution describes the diffusion of a
scalar from an initially discontinuous state. Smooth initial conditions were created by
evaluating the exact solution after some finite time interval. These conditions were then
integrated forward in time using the numerical model, comparing the computed values with the
exact solution. Tests were made for the diffusion of both momentum and density in each
direction. The momentum tests require open or periodic boundary conditions to be specified
in the streamwise direction and free-slip or zero stress conditions at the other boundaries.

Figure 3 shows the computed and exact solution given by Equation (32),

u(z, t)=
U
2

−
U
2

erf
�(z−z0)

(4nt)1/2

n
, (32)

for diffusion of horizontal momentum in the vertical direction. The analytical solution is
formally valid in an infinite domain. Differences between the computed and analytical
solutions are to be expected once the diffusive signal approaches the boundaries in a finite
domain. To assess solution quality, the root-mean-square (r.m.s.) relative error was computed
for 1

4BzB3
4 at t=12 s for several values of dz using the same time step dt. The errors are

always small and decrease with increasing spatial resolution as expected. The figure shows the
temporal evolution with 65 grid points in the vertical.

4.2. Time-dependent Couette flow

Simulation of the development of plane Couette flow exercises the numerical treatment of
inhomogeneous boundary conditions. Equation (33) is a series expansion for flow resulting
from viscous stress at a rigid boundary moving at speed U0 [8].
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Figure 3. Comparison of computed and exact solutions for diffusion of momentum.

u
U0

=
�

1−
z
h
�

−
2
p

%
�

n=1

1
n

exp(−n2p2nt/h2) sin
npz

h
. (33)

Figure 4 shows the comparison between the converged series solution and the simulated flow
on a relatively coarse grid of 33 vertical grid points at several instants in time. The agreement
is excellent with typical r.m.s. relative errors of O(10−4), independent of the time step provided
dt is less than about 0.1.

Figure 4. Comparison of computed and exact solutions for plane Couette flow.
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4.3. Internal gra6ity wa6es

Exact solutions for linear internal gravity waves are valid in the limit of vanishing viscosity and
diffusivity for small amplitude disturbances. These cases test the treatment of the baroclinic
forces and the rotation terms. For constant background stratification, velocity and density
perturbations are simple sinusoids in space and time with an oscillation frequency v deter-
mined by the dispersion relation,

v2=
(k2+ l2)N2+m2f 2

(k2+ l2+m2)
. (34)

Here k and l are the horizontal wavenumbers, m is the vertical wavenumber, N is the buoyancy
frequency and f is the Coriolis parameter.

Figures 5 and 6 show the comparison between computed and exact solutions for a mode
(3, 2, 1) wave (in the (x, y, z) directions) in a laterally periodic cube with stress-free upper and
lower lids.

Additional simulations were run with f=0. For finite amplitude waves, the non-linear terms
in the equations of motion are non-zero individually but sum to zero in each equation, i.e.
finite amplitude internal waves in a non-rotating frame have zero helicity and hence obey
linear internal wave equations. These simulations thus provide a partial test of the non-linear
terms. Errors in the treatment of the non-linear terms would produce non-vanishing non-linear
effects, and hence a deviation from the linear solution. Several cases were tested with good
agreement in each instance.

Figure 5. Comparison of simulated and measured instantaneous velocity profiles at a fixed (x, y) location
for small amplitude internal gravity waves in a rotating frame.
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Figure 6. Comparison of simulated and measured velocity and perturbation density time series for small
amplitude internal gravity waves in a rotating frame.

These tests suggest that the numerical algorithms have been properly implemented. Addi-
tional simulations, i.e. for flows lacking exact analytical solutions, are required, however, to
further validate the non-linear terms as well as the implementation of the non-uniform
geometrical coefficients.

5. SAMPLE APPLICATIONS

In this section, a series of sample applications are presented. These simulations were chosen
both to illustrate the types of flows amenable to study and to provide additional validation
tests. For these flows, no exact solutions are known and we rely on laboratory measurements,
approximate theory and internal consistency diagnostics to assess the model performance.

5.1. Solitary wa6es in a tilting tank

Here, the results of a numerical simulation are compared with a laboratory experiment of a
basin-scale seiching wave degenerating into a train of propagating solitary waves.

An initially tilted, relatively thin thermocline was allowed to relax in an experiment
conducted with salt-stratified water in a 6×0.3×0.29 m3 sealed tank [Horn, Imberger and
Ivey, ‘The degeneration of basin-scale internal waves in lakes’, submitted to J. Fluid Mech.
(1998)]. The early evolution of the resulting flow is characterized by a nearly linear, basin-scale
seiching motion. Energy is quickly transferred to smaller scales through non-linear interaction
and the flow at later times is dominated by a dispersing group of amplitude-ordered, internal
solitary waves. Two ultrasonic wave gauges recorded the average sound speed over finite
vertical intervals at two fixed horizontal locations. From these measurements, instantaneous,
vertical averages of density were inferred and compared with numerically computed values.
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Figure 7. Simulated isopycnals in a vertical plane. The simulation was configured to match a laboratory
experiment in a tilting tank. The locations of the two ultrasonic wave gauges are shown.

Figure 7 shows the overall evolution of the wave field and the positions of the wave gauges.
Figure 8 shows the comparison of the simulated and measured gauge data. The degeneration
of the large-scale mode and the emergence of the solitary wave group are captured remarkably
well. For later times, the laboratory and numerical experiments diverge, particularly with
respect to phase. The observed differences are consistent with the notion that the numerical

Figure 8. Comparison of simulated and measured wave gauge data.
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experiment was run at slightly higher energy than the laboratory experiment. A suite of
laboratory runs (Horn et al., submitted) has shown that the non-linearity of the solitary
waves is very sensitive to both the relative position (with respect to the upper and lower
boundaries) of the equilibrium density interface and the initial angle of tilt. The imprecision
in estimating these parameters, which are used in computing the synthetic initial conditions
for the numerical experiment, are significant (1 mm and 0.02°) and, we believe, large
enough to explain the observed discrepancies. An additional small effect may be due to
differences in the Prandtl number Pr=n/k. The simulations were run with a value of 50
rather than the physical value of 700 for salt-stratified water.

5.2. Exchange flow through a contracting channel

This example tests the implementation of the geometric terms in Vxy and illustrates the use
of the automatic diagnostics verifying incompressibility and potential energy balance.

Exchange flows in which fluids of differing densities flow in opposing directions through
a channel are of practical interest in oceanography because of their wide-spread occur-
rence. Well-known examples occur in the Straits of Gibraltar [9], and the Bosphorus [10],
in estuaries [11], and in deep ocean passes [12]. Although analytical solutions for
this problem do not exist, approximate solutions have been derived for steady, inviscid,
layered flow through a channel [13]. The applicability of the solutions to time-dependent,
viscous, continuously stratified systems is an open question. In particular, the existing
theory provides no guidance on the role of dissipation, mixing and entrainment across the
interface.

To study aspects of exchange flow inaccessible to hydraulic theory, the model was config-
ured to simulate a lock-exchange problem. An open-ended channel with a minimum width
near its mid-point is initialized with dense fluid filling one half of the channel, and light
fluid filling the other, all at rest. At t=0, the fluid begins to adjust, driven by the
baroclinic pressure gradient associated with the density contrast, and by an imposed baro-
tropic pressure drop that models a difference in free-surface height between the channel
end-points within the rigid-lid formulation. By varying the magnitude of the barotropic
pressure difference, the direction and magnitude of the depth-averaged flow can be con-
trolled. The simulated flow evolves to a quasi-steady state in which the interface position is
similar to the theoretical prediction (Figure 9).

The principal distinction between theory and the simulation is the finite thickness of the
interface, which is seen to vary systematically as a function of along-channel position. This
third layer is created by mixing at the interface [14]. The simulations also show higher-
order dynamics not captured by the theory, e.g. the generation and propagation of non-
hydrostatic waves and shear instabilities.

The lock-exchange calculations are run as large eddy simulations (LES) using a
Smagorinksy-like closure scheme to represent subgrid scale processes. In this scheme, verti-
cal viscosities and diffusivities vary in space and time and are determined by the grid-scale
shear and stratification, assuming a production/dissipation balance at unresolved scales
[15,16]. In this calculation, viscous fringe layers were also employed near the open
boundaries to suppress high-wavenumber fluctuations and wave reflections.
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Figure 9. Upper panel: channel geometry. Lower panel: contours of the density field, overlaid with
velocity arrows and the predicted position of interface (thick line), of the laterally-averaged fields in an
exchange flow. This snapshot is from hour 2 of a nearly-steady simulation with approximately zero

depth-averaged flow.

Two diagnostics are routinely computed as the code executes. The first is based on the
potential energy equation (35) [17],

d
dt
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&

V
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1

r0V
g
&

rz dV. (36)

Given the computed solutions at discrete time intervals, generally much larger than the
computational time step, the amount by which the potential energy equation does not balance
can be estimated, independent of the calculations used to advance the solutions in time. Figure
10 shows the balance over a 10 min interval bounding the time corresponding to Figure 9. The
residual has a mean of 5.2×10−9 W kg−1 (standard deviation 5.6×10−8 W kg−1), which is
small compared with the characteristic magnitudes of either the buoyancy flux, the advective
flux of potential energy (both approximately 1×10−6 W kg−1) or the rate of pressure work
(:1×10−5 W kg−1, not shown).

A second diagnostic monitors the overall effectiveness of the pressure solver. One interpreta-
tion of the numerically computed field P is that its ‘gradient’ G[P ] is exactly that field required
to project the intermediate solution Ub � onto its divergence-free subspace. An exact solution for
P would identically eliminate divergence while approximate solutions will leave a small residual
divergence in the computed flow field. The magnitude of this residual is thus a sensitive
diagnostic for the projection scheme as a whole. The magnitude of the volume-averaged
divergence is automatically tabulated as the code executes. Typical values for this simulation
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Figure 10. Terms in the potential energy (p.e.) balance equation over a 10 min interval. The terms are
(from bottom to top): buoyancy (short dash), residual (solid), p.e. diffusion (grey thick), (/(t(p.e.)

(dash-dot), and advective flux of p.e. (dash).

are of order 10−6 s−1, which are small compared with characteristic (inverse) time scales of the
physical problem.

5.3. Buoyancy-dri6en circulation

Two final examples demonstrate proper treatment of the geometrical factors in Vxz. Figure 11
shows a cross-section of the domain along with the grid lines in the x–z plane. A constant
density fluid, initially at rest, is subjected to a negative buoyancy flux B over a portion of the

Figure 11. Numerical grid in the x–z plane for simulation of buoyancy driven flow. The region of
imposed surface buoyancy flux is indicated.
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Figure 12. Contours of density and velocity arrows for buoyancy driven circulation at Ra=106.

upper surface SB. A buoyancy-driven circulation is produced, which approaches steady state
as t��. The circulation is similar to that produced in a domain of rectangular cross-
section but modified by the presence of the sloping boundary.

Figure 12 shows the instantaneous density contours and a subsampling of the u–w
velocity arrows for a simulation with Ra=g/(r0nk)�dr/dz �L4=106. Here L is taken as the
nominal vertical scale (see Figure 11) and �dr/dz � is the magnitude of prescribed flux over
SB. The snapshot shown was taken from the central vertical plane after the flow had
become nearly steady. The flow was computed using a grid mesh of 65×9×65 points in
the j-, h- and z-directions respectively. For this run, free-slip boundary conditions were
imposed at all walls and adiabatic or zero flux conditions were used for density at all
boundary points except within the forcing region SB. Estimated errors in the kinetic and
potential energy balances were small, consistent with uncertainty in the assessment of vol-
ume integrated kinetic and potential energy in the fourth and fifth significant digit respec-
tively.

5.4. Wa6e–boundary interaction

The last example illustrates a flow that is characterized primarily by large-scale motions
except near a particular spatial location. Here, a large-scale internal wave approaches a
sloping boundary where non-linear interactions produce much smaller scales of motion. The
ambient stratification has a three-layer structure, with two homogeneous layers separated by
a relatively thin pycnocline. A sharp depression of the pycnocline, with finite lateral extent
near the right end of the domain, was used as an initial condition. The ensuing flow is a
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Figure 13. contours of density as a wave of depression approaches a sloping boundary.

leftward propagating wave of depression. Figure 13 shows the cross-sectional shape of the
domain and the temporal evolution of the isopycnals as the wave approaches the sloping
boundary. The geometry is such that the grid lines focus and the resolution is highest near the
region where the wave–boundary interaction occurs. The figure shown is from a relatively
low-resolution (65×9×65) simulation with grid points in the along-slope, cross-slope and
vertical directions respectively.

Figure 14 shows the wave–boundary interaction in more detail at t=26 s. The simulation
clearly shows a convergence of up- and down-slope velocity jets as the wave steepens locally,
a prominent feature observed in the experiments of Michallet and Ivey [18] using dye and
particle image velocimetry (PIV) techniques.

Figure 14. Detail of wave–boundary interaction at t=26 s.
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6. DISCUSSION

In conjunction with a boundary-fitting, orthogonal co-ordinate system, a numerical model for
simulating three-dimensional, non-hydrostatic flow in irregular domains has been designed and
implemented. The implementation and performance of the code have been validated by tests
against analytical solutions, laboratory experiments and by internal consistency checks and
diagnostics. The primary purpose of the algorithm is for studying idealized flows characterized
by waves or buoyancy-induced currents interacting with non-uniform topography. Application
of the model is limited to spatial domains with variability in two rather than three dimensions,
i.e. the ‘reduced complexity’ domains described in Section 2. The model is thus designed for the
class of problems somewhere between those amenable to the neglect of boundary variability
and global spectral methods and those in such complex geometries that severe simplification of
the physics and/or low-order numerical methods are required.

Several geophysically motivated example simulations, including an initial value problem for
non-linear gravity waves, an exchange flow through a contracting channel, buoyancy-driven
flow in a variable depth basin, and waves at a sloping boundary were presented.

The choice of numerical methods reflects a compromise between the high accuracy achiev-
able in undeformed domains and the low-order accuracy necessary for true ‘simulation’ of
naturally occurring flow in complicated bathymetries. The methodology is based on fourth-
order compact differencing for spatial derivatives. When combined with the variable transfor-
mations, this allows inhomogeneous external conditions over irregular geometries to be treated
with relative ease. The pressure projection scheme uses a fourth-order finite difference based
multi-grid method to ensure incompressibility of the computed solution. Optionally, this
solution can be iteratively refined using a consistent, compact representation of the differential
operator but this has not been found to be necessary.

The time stepping scheme is third-order accurate and explicit. In general, explicit treatment
of the viscous and diffusive terms restricts the allowable time step due to stability consider-
ations. In practice, however, we have observed that stability requirements associated with
advection or internal wave motion are often more stringent than those associated with
diffusion. Thus, explicit temporal integration appears not to be a serious limitation, at least for
many problems of interest. Furthermore, when feasible, explicit treatment of the viscous terms
significantly simplifies the imposition of accurate boundary conditions in the projection scheme
relative to implicit methods, see e.g. [19].

At low to moderate Reynolds numbers, DNS simulations may be appropriate. At higher
Reynolds numbers, LES via subgrid-scale closure is required. Probably the most significant
limitation of the model in its present state is the lack of quantitative confidence in the closure
scheme. It is noted, however, that the code has been implemented in terms of spatially and
temporally variable eddy viscosity and diffusivity. For DNS simulations, these coefficients are
fixed at molecular values and sufficient grid density is necessary to resolve the dissipative
scales. When the LES mode is selected, the values of these coefficients are determined using a
density-stratified formulation of the Smagorinsky scheme. Substitution of alternative local
closure schemes requires the replacement of a single subroutine. We have not yet implemented
schemes requiring additional evolution equations, i.e. for turbulent kinetic energy or density
variance. Turbulence closure in stratified fluids, particularly when internal waves are important
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energy sources for the turbulence, is an active area of current research. An experimental
program, perhaps focused on flows similar to the idealized examples presented here, would be
useful in helping to evaluate and improve candidate schemes.
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